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9 Introduction to directed evolution: 
single substitutions & error-prone PCR

© 2023 Romas Kazlauskas

Summary. Directed evolution involves creating random variations in the target protein followed by identification of  
the improved variants. This chapter explain how to calculate the numbers of  possible variants (the numbers are 
astronomical) and considers three ways that one can find an improved variant with one amino acid substitution: 1) 
creating and testing every possible single substitution variant, 2) error prone PCR to create an incomplete set of  
random substitutions and 3) making substitutions only at the regions most likely to yield improvements. This chapter 
also explains degenerate codons, oversampling needed during screening and the incompleteness of  error-prone PCR 
libraries. 

Key learning goals

• The number of possible amino acid substitutions depends on the number of substitutions, 
the number of replacement amino acids, and number of amino acids in the chain. This 
chapter focuses on single substitutions. 

• Saturation mutagenesis at a single codon creates variants where each of the nineteen 
other amino acids replace the wild type amino acid. Testing these variants identifies any 
with improved properties. Saturation mutagenesis in the substrate-binding site is a good 
approach to find substitutions that reshape the binding site to expand the substrate range 
or alter the selectivity.

• Degenerate codons can encode all twenty amino acids or a subset of amino acids. 
Screening a mixture of variants requires oversampling to ensure that at least one of each 
type of variant has been tested.

• Error-prone PCR is a good approach to make nucleotide substitutions over a large 
section of DNA. Error-prone PCR libraries are incomplete due to DNA polymerase bias 
and codon bias, so are best suited for problems like increasing protein stability where 
many substitutions can yield improvements. Random methods also favor locations 
outside the active site, so they are inefficient in finding substitutions within the substrate-
binding regions. 
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9.1 Introduction

Directed evolution is the recursive generation of random variations and selection of improved 
variants, usually by screening. Directed evolution is a simple idea. Over forty years ago Eigen & 
Gardiner (1984) suggested a set of computer instructions for directed evolution.

10 PRODUCE A MUTANT SPECTRUM OF SELF-REPRODUCING TEMPLATES
20 SEPARATE AND CLONE INDIVIDUAL MUTANTS
30 AMPLIFY CLONES
40 EXPRESS CLONES
50 TEST FOR OPTIMAL PHENOTYPES
60 IDENTIFY OPTIMAL GENOTYPES
70 RETURN TO 10 WITH A SAMPLE OF OPTIMAL GENOTYPES

Figure 9.1. Suggested instructions for directed evolution. 

In spite of this simplicity, it is hard to put in practice because the number of possible variants 
is so vast. One can never make all possible variants, so the challenge is to choose the subset of 
variants that is most likely to show the desired improvements. In this chapter, we consider the 
simplest goal of directed evolution – find one amino acid substitution that improves the protein. 
Sometimes a single substitution is enough. For example, Met to Ala substitution stabilized the 
laundry protease to bleach (Estell et al., 1985). In other cases, multiple substitutions are needed to 
create larger improvement or several different kinds of improvements. Strategies to find multiple 
substitutions will be considered in the next chapter.

9.2 Number of possible substitution variants

The most common change in a protein is substitution of one amino acid with another. An 
important question is how many substitutions are possible. The answer depends on 1) the 
number of substitutions (k), the number of replacement amino acids (n), and number of amino 
acids in the chain (L). It is useful to break the problem into two parts: how many replacements 
are possible and how many locations are possible. The number of possible protein variants with k 
substitutions, Vk, depends on the product of the number of location possibilities and the number 
of replacement possibilities, eq. 9.1.

Vk = location possibilities * replacement possibilities (9.1)

Review: permutations and combinations

Permutations relate to the order of the elements, while combinations refer to selecting 
elements from a group. Situations where order matters are permutations, while situations where 
the order does not matter are combinations. A lock sequence such as 5-27-37 is a permutation 
because the numbers must be entered in that order. (Confusingly, these locks are called 
combination locks, while permutation locks would be more accurate.) The other thing to 
consider in the calculating the number of possibilities is whether items can repeat or not. In the 
lock sequence, the numbers can repeat. (Review of permutations and combinations: Kreyszig, 
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1972)

Permutations with repetition. The lock sequence example is a permutation where repetition is 
possible. To determine the number of possible lock sequences, there are say, 39 numbers to 
choose for the first number, then 39 again for the second number and again 39 for the third. The 
total number of choices is 39*39*39 = 59,319. In general, for a permutation with repetition, 

there are n things to choose from and k choices each time so there are nk  possibilities. In protein 
engineering, the number of possible amino acid replacements at specified locations is a 
permutation with repetition. For two locations, x and y, an alanine at position x is different from 
an alanine at position y. Since order is important (substitution at x differs from substitution at y), 
it is a permutation. It is further a permutation with repetition since both x and y may contain an 
alanine.

number of possibilities = nk

For example, number of possible double-substitution variants of a dipeptide is 192 because 
there are nineteen possible replacement amino acids and two positions that require a choice.

Permutations without repetition. When choices are used up upon being chosen, then repetition is 
not possible. For example, choosing an order for sixteen billiard balls is an example of a 
permutation without repetition. The there are 16 choices at first, then 15 remaining balls and so 
on. There are 16! different orders that these balls could be chosen (16! ~21*1012). In general, 
there are n things to choose from the first time, n-1 the second time, etc. so there are n! choices in 
total. In some cases, one may choose fewer than the maximum possible. Then the choices are: 

number of possibilities = total number
number not used

= n!
(n-k)!  where k is the number choices made.

For example, one could choose only three billiard balls from the sixteen possible. In this case, 
k = 3 and n = 16, so the number of possibilities is 16!/13! = 16*15*14 = 3,360.

Combinations without repetition. Here the order does not matter, but choices cannot be repeated. 
For example, one could choose billiard balls again, but without regard to the order in which they 
were chosen. We already have the equation above for the case were order does matter, we just 
need to reduce it by the number of ways the objects could be in ordered. k objects can be ordered 
in k! (k for the first choice, k-1 for the second choice, etc.), So the number of combinations 
without repetition when choosing k objects from a total of n is: 

number of possibilities = total number
order does not matter * number not used

= n!
k!(n-k)!   (9.2)

In protein engineering, the number of locations in a protein is a combination without 
repetition. It does not matter what order they are chosen, but once chosen, they cannot be 
chosen again. The choice x and y is the same as the choice y and x, but the choice x and x is 
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impossible. 

We will not consider the fourth possibility, combinations with repetition since it does not 
occur in the context of protein engineering. 

Replacement possibilities = nk

The number of replacement possibilities at k locations with n replacements is nk. In the 
general case, n is the number of objects to choose from (amino acids in this case) and k is the 
number of choices to be made (positions mutated in this case). For example, replacing the amino 
acids at positions x and y with new amino acids creates 192 = 361 variants. If you include the 
original amino acids, then number of possibilities is 202 = 400. This value includes the 361 two-
substitution variants, 38 single-substitution variants and one wild-type enzyme. In two more 
examples, the number of nucleotide sequences of length 6 (k = 6) are possible from a set of 4 
nucleotides (n= 4) is 46 or 4,096 and the number of possible amino acid sequences of length 300 
(k = 300; n = 20) is 20300 or ~2 × 10390. These values include single substitution variants, double 
substitution variants, triple, etc. This simple calculation firmly establishes that you can never 
make all the variants of a protein. There are only ~1070 particles in the universe, so 2 × 10390 is 
an impossibly large number. One will never be able to test all possibilities.

Problem 9.1. Consider a small protein of  only 50 amino acids. How many variants are possible if  all 20 
amino acids are possible at every location? If  the average molecular weight of  these protein variants is 
5,500 g/mol, what would be the weight, in grams, of  a collection containing only one molecule of  each 
variant? Compare this value to the weight of  the earth, ~6 × 1027 g. 

Location possibilities = L!/(k!(L-k)!)

The number of location possibilities is given by equation 9.3, which is the same as 9.2, except 
n has been replaced by L to indicate sequence length. 

locationpossibilities= L!
k!(L-k)!

 = 
total number of permutations

order not important ×  number of permutations not used

(9.3)
For example, to choose two locations in a 300 amino acid protein, there are 300 places 

to put the first substitution, but only 299 places to put the second substitution. The total 
number of  permutations is 300 × 299 or 89,700. Since order is not important, we divide 
by 2! or 2.

(300!/(2!(300-2)!)) = (300!/(2! × 298!)) = (300 × 299)/2 = 44,850

Hint: Large factorials are too large for many calculators. For example, 300! ~ 3 x 10614. Simplify the ratio 
L!/(L-k)! To L*(L-1)*(L-2)*...(L-k-1) as shown above to avoid calculating large factorials.
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Number of possible variants
Combining the expression for the number of  replacements possible with the number of  

locations possible yields an expression for the number of  possible protein variants with k 
substitutions, Vk:

Vk =
L !

k !(L − k )!
19k

(9.4)
The Python script 9.1 in the supporting information calculates values of  Vk. For example, for 

one substitution anywhere in a 300-aa protein: V1 = 300 *19 = 5,700. For two substitutions 
anywhere in a 300-aa protein: V2 = 44,850 * 361 = 16,190,850

9.3 Exhaustive search of all single amino acid substitutions

The straightforward way to find a single amino acid substitution that improves a protein is to 
make all possible single amino acid substitution variants and test them. For example, DeSantis 
and coworkers (2003) made and screened all possible single-amino-acid-substitution variants of a 
nitrilase to find one with increased enantioselectivity for the synthesis of a cholesterol-lowering 
drug, atorvastatin (Lipitor®), Figure 9.1. The starting nitrilase showed an enantioselectivity of 
only ~15. Their experiments identified the Ala190His variant, which showed an 
enantioselectivity of >100. 

HOOC C15N
OH

NC C15N
OH

NC COOH
OH

(S), 130 g/mol

hydrolysis
of 14N nitrile

prochiral, if 
isotope ignored

hydrolysis
of 15N nitrile

(R), 129 g/mol
atorvastatin precursor

Figure 9.2. A nitrilase can catalyze the hydrolysis of either nitrile in the dinitrile shown in the center. 
Hydrolysis of the nitrile on the left yields the (S)-enantiomer, while hydrolysis of the nitrile on the right 
yields the (R)-enantiomer. To find variants with higher enantioselectivity for the (R)-enantiomer, DeSantis 
and coworkers (2003) used the isotopically labelled dinitrile shown. The two hydrolysis products differed in 
mass, so mass spectrometry revealed the ratio of the (R)- and (S)-products. 

The advantage of such systematic screening is completeness. Testing every possibility ensures 
finding the best one. Other methods described below make incomplete sets of single-substitution 
variants, so the best possible variant might not be in the library. For example, libraries of single 
substitution variants created by error-prone PCR are incomplete and would likely not include the 
Ala190His variant. Converting a codon for alanine into a codon for histidine requires two 
nucleotide substitutions, which makes this substitution much less likely than those requiring one 
nucleotide substitution, see section 9.4.3 below. Thus, systematic screening is most suitable when 
one expects the beneficial variants to be rare and it is important not to miss these variants. 

The disadvantage of this systematic, exhaustive approach is the large amount of work. The 
nitrilase above contained 330 amino acids, so there are 330 × 19 = 6270 possible single amino 
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acid substitution variants. The researchers made and tested all of them.

9.2.1 Degenerate codons encode multiple amino acids

Site-directed mutagenesis is the replacement of one amino acid with another at a particular 
location. This replacement involves synthesis of new DNA strands, typically with a DNA 
polymerase to extend mutagenic DNA primers. Details of one site-directed mutagenesis method 
were in Chapter 1. These mutagenic primers are made by chemical synthesis, usually by a DNA 
synthesis company. These primers encode the replacement amino acid instead of the original 
amino acid, Figure 9.2. 

wild type sequence
5’...GATTGCAGCTGCTGTTTTCCACAATTCAGTATTGCCAGACACCGAGC...

primer for site-directed mutagenesis His103Val
  5’ GATTGCAGCTGCTGTTTTCGTGAATTCAGTATTGCCAGAC 3'

primer mixture for site-saturation mutagenesis His103Xxx
            5' GCTGTTTTCNNKAATTCAGTATTGCCAGAC 3'

Figure 9.2. Example of primers for site-directed and site-saturation mutagenesis at the underlined codon. 
The wild type codon is CAC, which encodes histidine. In the primer for site-directed mutagenesis, this 
codon is replaced by GTC, which encodes valine. The mixture of primers for site-saturation mutagenesis 
contains thirty-two different primers as represented here by the degenerate codon NNK. 

Site-saturation mutagenesis makes all nineteen possible amino-acid substitutions at a 
particular location. One approach is nineteen site-directed mutagenesis experiments at each 
amino acid position. This approach requires, at each location, nineteen primer pairs, one 
encoding each of the replacement amino acids, and nineteen separate site-directed mutagenesis 
procedures. This solution is tedious and rarely used. 

More commonly, researchers use mixtures of primers that encode multiple amino acids. 
These primers contain degenerate codons, which are mixtures of codons prepared by DNA 
synthesis, Table 9.1. For example, the NNK codon represents a mixture of 32 different codon. N 
represents any of the four nucleotides (A, T, G, C), while K represents the two nucleotides 
containing a ketone group (G or T). Site-directed mutagenesis using degenerate codons creates a 
mixture of multiple protein variants. Transfer of the mixture of DNA into bacteria yields a 
mixture of bacteria, each one producing one variation at the targeted location. This approach 
saves time by requiring only one site-directed mutagenesis experiment, but increases the amount 
of screening since it yields a mixture of variants. 

Table 9.1. One-letter ambiguity codes indicate mixtures of several nucleotides. 
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Table 6.1. Degenerate codons use the one-letter codes below indicating one of  several 
nucleotides.  

Table 6.1. The mixture of  codons represented by NNK or NNS contain sixteen codons in 
common and sixteen that differ; N = A, C, G or T; K = G or T; S = G or C. These 32 codons 
encode all twenty amino acids, but also includes one stop codon and 11 redundant codons. 

one-letter 
code

nucleotides

N (any) A, T, G, C

B (not A) T, G, C

D (not C) A, T, G

H (not G) A, T, C

V (not T) A, G, C

K (keto) G, T

M (amino) A, C

R (purine) A, G

S (strong) G, C

W (weak) A, T

Y (pyrimidine) C, T

An example nucleotide sequence containing a degenerate codon is 5’-NNKATG, which 
contains the degenerate codon NNK. Chemists make this nucleotide mixture by adding mixtures 
of nucleotide precursors at the appropriate step. Chemical DNA synthesis starts at the 3’-end. 
For this example, the chemist adds the phosphoramidite precursor for G, then, the precursor for 
T, then the precursor for A. At the next step, the chemist adds an equimolar mixture of G and T 
precursors and in the last two steps the chemist adds an equimolar mixture of A, T, G and C. 
The result is a mixture of 32 DNA molecules which differ in nucleotide sequence at the NNK 
locations. Besides the twenty codons encoding the twenty amino acids, it also contains eleven 
redundant codons and one stop codon, Table S9.1 in the supporting information. Twelve amino 
acids are encoded once: Asn, Asp, Cys, Gln, Glu, His, Ile, Lys, Met, Phe, Trp, Tyr; five amino 
acids are encoded twice: Ala, Gly, Pro, Thr, Val and three amino acids are encoded three times: 
Arg, Leu, Ser.  

An alternative to the NNK degenerate codon is the NNS degenerate codon, which also 
encodes all the amino acids, but changes sixteen of the thirty-two codons. K represents G or T, 
while S represents G or C. The sixteen codons that contain G in the last position are identical in 
both choices of degenerate codon. The remaining sixteen codons are NNT for the NNK 
degenerate codon, but are NNC for the NNS degenerate codon. The NNT codons encode the 
same amino acids as the NNC codons, but using NNS in place of NNK increases the GC 
content. Higher GC content increases the melting temperature of the primers and, depending on 
the rest of sequence, may alter the secondary structure of the primers. 

The extra codons in the NNK or NNS degenerate codons beyond the twenty codons needed 
to encode the twenty amino acids increase the amount of screening needed, see section 9.2. An 
alternative to this extra screening is to replace the NNK or NNS mutagenic primer with a 
mixture of four primers: two with degenerate codons and two with specific codons, Table 9.3. 
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The NDT degenerate primer encodes twelve amino acids: N, S, I, H, R, L, Y. C, F, D, G, V (N 
= A, T, C, or G and D = A, T, or G). The VMA degenerate primer encodes six amino acids: E, 
A, Q, P, K, T (V = A, C, or G and M = A or C). Finally, the ATG codon encodes M and the 
TGG codon encodes W.  Adding the primers in a 12: 6: 1: 1 ratio encodes all twenty amino 
acids, with no stop codons, no rare codons, and no synonymous codons (Tang et al., 2012). 

Table 9.2. A 20-codon mixture of two degenerate codons (NDT encodes twelve amino acids; 
VMA encodes six amino acids) and two specific codons (ATG and TGG) efficiently randomizes 
the encoded amino acid. A 12:6:1:1 mixture of primers containing these four codons encodes all 
20 amino acids, no stop codons and includes no redundant codons and no rare codon for yeast 
or E. coli.

Table 6.2.  Randomization of one mutation site with 20 amino acids using two degenerate codons (NDT 
encodes 12 amino acids: N, S, I, H, R, L, Y, C, F, D, G, and V; VMA encodes 6 amino acids: E, A, Q, P, K, 
and T) and two specific codons (ATG encodes M and TGG encodes W). A 12:6:1:1 mixture of primers 
containing these four codons encodes all 20 amino acids, no stop codons and includes no redundant 
codons and no rare codon for yeast or E. coli.

no rare codons

codon nucleotide 
mixture

encoded 
amino acid

NDT

AAT Asn

AGT Ser

ATT Ile

TAT Tyr

TGT Cys

TTT Phe

GAT Asp

GGT Gly

GTT Val

CAT His

CGT Arg

CTT Leu

VMA

AAA Lys

ACA Thr

GAA Glu

GCA Ala

CAA Gln

CCA Pro

ATG ATG Met

TGG TGG Trp
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The disadvantage of this approach is the requirement of four mutagenic primers for each 
location randomized instead of one mutagenic primer for the NNK or NNS approach. For 
randomization of  a single site, the NNK/NNS approach is simpler, but for randomization of 
multiple sites the time savings of less screening tips the balance toward the four mutagenic primer 
approach. 

9.2.2 Oversampling to find all variants in a mixture 

Site-saturation mutagenesis using degenerate codons yields a mixture of bacteria, each 
producing a different protein. Spreading the mixture on an agar plate and allowing them to grow 
yields individual colonies where each colony is derived from a single bacterium. The bacterial 
colonies are picked and each tested separately. Randomly picking colonies results in picking some 
duplicate variants, so one needs to test more colonies than the number of possibilities to have a 
high probability of testing each possible variant. This section explain how much oversampling is 
required. The conclusion will be that for saturation mutagenesis of a single position using an 
NNK codon, sampling 94 colonies ensures that the rarest codon in the mixture (an amino acid 
encoded only once) has a 95% probability of being included in the sample. To ensure that at 
least one of each codon was tested requires sampling 200 colonies for a 95% probability. 

Including the rarest variant, three-fold oversampling. To derive a general equation, 
consider the probability to pick a blue ball from an equal and infinite mixture of red, white & 
blue balls. The probability is 1/3, which is the frequency of the blue balls in the mixture. Lets call 
this frequency Fblue. Similarly, the probability to NOT pick a blue ball from this mixture is 1 – 
Fblue or 1 – 1/3 or 2/3. 

If we pick a second ball, the probability to pick a second blue ball is 1/3, the same as for the 
first ball since it is an infinite mixture. The probability for both balls to be blue is (1/3)2 or 1/9. 
Similarly, the probability for neither ball to be blue after two picks is (2/3)2 or (1 – 1/3)2 = 0.436. 
In the general case, the probability NOT to pick a blue ball after T  picks would be (1 – Fblue)T. 

Therefore, the probability of having a least one blue ball is 1 –  (1 – Fblue)T. The probability of 
picking a least one blue ball after two picks from an equal mixture of red, white & blue is 1 – (1 – 
1/3)2 = 0.564. In the general case, the probability of picking object i from an infinite mixture, Pi, 

is 1 –  (1 – Fi)
T where Fi is the frequency of object i in the mixture and T is the number of times 

an object is selected from the mixture. 

In the context of protein engineering, the probability Pi, that a particular variant, i, is among 
T tested transformants (colonies) is given by:

 P
i
= 1− (1−F

i
)Trarest    

(9.5)
where Fi is the frequency at which sequence i is present in the library. This frequency can be 
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replaced by 1/N where N is the number of replacement codons. These equations assume the 
variants form independently according to a Poisson distribution.

P
i
= 1− 1− 1/N( )⎡

⎣
⎤
⎦
Trarest

  

(9.6)

A common situation is a site-saturation mutagenesis created using an NNK degenerate 
codon. The number of different codons, N, is 32, so the frequency Fi is 0.03125.  While some 
amino acids are encoded by two or even three codons in this mixture and their frequency is 
higher, one is normally concerned about the rarest members, those amino acids encoded by a 
single codon. 

Equation 9.6 can be rearranged to yield the number of transformants that needed to be 
tested. 

T
rarest

=
ln 1−P

i( )
ln 1− 1

N( )   

(9.7)
For a 95% probability of including a particular variant in a saturation mutagenesis 

experiment using an NNK codon, one needs to test 94 colonies, equation 9.8.

T
rarest

=
ln 1− 0.95( )
ln 1− 1

32( ) = 94  

(9.8)

Example 9.2. How many colonies must be screened to have a 95% probability of including a particular 
variant when three sites are simultaneously varied using site-saturation mutagenesis with a NNK codons. How 
would this change if a 20-codon mixture replaces the NNK codons? 

For NNK, N = 32*32*32 or 32,768; equation 9.7 yields T = 98,163, while for the 20-codon mixture, N = 
20*20*20 = 8,000; equation 9.7 yields T = 23,964, which is about four-fold fewer colonies. This example shows 
the increasing advantage of the 20-codon mixture (Table 9.2) when randomizing multiple sites. As the number 
of sites increases, the advantage of the smaller set of codons increases.

Researchers typically screen 3·N transformants with the expectation that they have included 
the rarest member of the library. This guideline comes from equation 9.6 above with a 
probability of 0.95.

0.95 = 1− 1− 1/N( )⎡
⎣

⎤
⎦
Trarest

; 0.05 = 1− 1/N( )⎡
⎣

⎤
⎦
Trarest

; ln(0.05) = T
rarest

ln 1− 1/N( )⎡
⎣

⎤
⎦

Using the approximation that ln(1-x) = -x when x is small, yields: 

ln(0.05) = T
rarest

(−1/N ); T
rarest

= −N ⋅ln(0.05)
T
rarest

= 3 ⋅N

(9.9)
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Thus, three-fold oversampling, or testing three times the number of expected variants, gives a 
95% probability that any individual variant has been tested. This three-fold oversampling does 
not mean that the library has a 95% chance of being 100% complete. To ensure with a 95% 
probability that ALL variants have been tested requires even more oversampling.  

Including all the variants. What is the probability of picking at least one of each object? 
If you pick 9 balls, the probability to have at least one blue ball is 1 – (2/3)9 or 1 – (1 – 1/3)9 = 
0.976.  Similarly the probability to have a least one red ball among the nine is 0.976 and the 
same for the white ball. The probability of having at least one of each color is (0.976)3 or 0.93. In 

the general case, the probability of having all possibilities, P
i
 =  1− 1− 1

N( )( )Tall⎡
⎣⎢

⎤
⎦⎥

N

 where N is the 

number of objects in the mixture. Rearranging this equation yields eq. 9.10.

T
all
=

ln 1− P
i( )

1
N

⎛

⎝
⎜

⎞

⎠
⎟

ln 1− 1
N

⎛

⎝⎜
⎞

⎠⎟

(9.10)

Problem 9.2. Show that screening 203 colonies gives a 95% probability to screen all variants of a single site 
saturation site made with an NNK degenerate codon.

While equation 9.7 could be simplified to the three-fold oversampling rule in equation 9.9, no 
similar simplification is possible for equation 9.10. For typical cases, including all variants 
requires six- to ten-fold oversampling. Python Script 9.2 in the supporting information calculates 
Trarest and Tall using equations 9.7 and 9.10 for different numbers of variants and probabilities. 

9.2.3 Library quality: completeness and uniqueness

For this discussion, a library is a collection of DNA sequences that encode proteins. Two 
features define Q, the quality of this library: completeness, C, and uniqueness, U (Patrick et al. 
2003). Completeness ensures that one does not miss a possible beneficial variant, while 
uniqueness avoids testing the same variant multiple times. Library quality, defined by eq. 9.11, 
has a maximum value of one for a library that contains all possible variants without any 
duplicates. 

Q =C·U (9.11)

Completeness is the fraction of all possible proteins, given the goal of the library, that are 
encoded by this library. For example, the goal of saturation mutagenesis is to test all possible 
substitutions at the selected locations. If two locations are targeted for saturation mutagenesis, 
then the maximum possible is 20x20 or 400 proteins. Saturation mutagenesis using an NNK 
codon is complete (C = 1) since this library encodes all 400 of the possible 400 proteins. In 
contrast, saturation mutagenesis with an NDT codon is 36% complete (C = 0.36) since it encodes 
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only 12x12 = 144 of the possible 400 proteins.

Uniqueness is the fraction of non-synonymous DNA sequences in the library. For example, 
saturation mutagenesis using an NNK codon is only 39% unique (U = 0.39; 20x20/32x32) 
because using 32 codons to encode 20 amino acids creates synonymous DNA sequences. In 
contrast, saturation mutagenesis with an NDT codon is 100% unique (U = 1) since each DNA 
sequence encodes a different amino acid. 

The library quality for saturation mutagenesis libraries created using the NNK or NDT 
codons decreases with the number of locations targeted, Table 9.6. The quality of the NNK 
library decreases because it contains increasing numbers of duplicates, while the quality of the 
NDT library decreases because it is increasingly incomplete. 

Table 9.3. The quality of saturation mutagenesis libraries decreases with increasing 
numbers of targeted locations. The NNK library contains increasing numbers of duplicates, 
while the NDT library is increasingly incomplete.

Table 6.x. The quality of saturation mutagenesis libraries decreases with increasing numbers of 
targeted locations. The NNK library contains increasing numbers of duplicates, while the NDT 
library is increasingly incomplete.


number of 
locations

complete-
ness

unique-
ness

library 
quality

complete-
ness 

unique-
ness

library 
quality

NNK codon NDT codon

1 1 20/32 = 0.62 12/20 1 0.60

2 1 (20/32)2 0.39 (12/20)2 1 0.36

3 1 (20/32)3 0.24 (12/20)3 1 0.22

4 1 (20/32)4 0.15 (12/20)4 1 0.13

To choose the best approach for saturation mutagenesis, one should also consider the 
number of transformants that will be screened. If one plans to screen a small number of 
transformants, then the NDT library is better because a greater number of protein variants will 
be tested. Each transformant screened from the NDT library is likely to be unique, while the 
NNK library will contain duplicates. However, if one plans to screen all the transformants then 
the NNK library is better because it contains more total proteins. Screening the NNK library 
with three-fold over sampling requires 1,024 x 3 = 3072 measurements. Screening the NDT 
library with three-fold over sampling requires 400 x 3 = 1200 measurements. Screening greater 
numbers of transformants for the NNK library compensates for the low uniqueness in the library. 

9.4 Error-prone PCR with a low mutation rate

The polymerase chain reaction (PCR) copies DNA strands. This copying introduces errors. 
By choosing the appropriate polymerase and reaction conditions, the overall error rate can be as 
high as ~0.5% or 5 nucleotide substitutions per thousand nucleotides. Error-prone PCR (epPCR) 
is a good way to introduce random mutations into a long stretch of DNA such as that encoding 
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an entire gene or several genes. The procedure is simple and creates a library containing a small 
number of mutations. Screening this library identifies variants with improved properties. (For 
shorter (<100 bp) DNA segments, chemical synthesis of the sequence using nucleotide mixtures is 
a better approach.)

One disadvantage of error-prone PCR is the imprecise control over the number of mutations 
introduced. At low mutation rates, the library contain many unchanged sequences (wild type) 
and many duplicates of single substitution variants. Screening these unchanged sequences and 
duplicates wastes time. A second disadvantage is that error-prone PCR creates an incomplete set 
of amino acid substitutions, Table 6.4. Both the way that nucleotides encode amino acids and the 
bias of the polymerase errors contribute to this incompleteness. Error-prone PCR is best suited to 
those cases where one  expects many possible solutions. In these cases, an incomplete library will 
likely contain improved variants.

Table 9.4. Amino acid substitutions introduced by error-prone PCR are biased by the 
preference of the polymerase for certain types of nucleotide replacement, by the encoding of 
amino acids in the codons, and by the spatial properties of folded proteins.

 Table 6.4


type of bias description

non-random nucleotide 
substitutions by DNA 
polymerase

substitutions at AT sites are more common than substitutions at GC sites; 
replacements favor transitions and an increase in GC pairs

non-random encoding of 
amino acids within 
codons

single nucleotide substitutions in a codon yield an average of 5.7 amino 
acid replacements; encoding the remaining 13.3 amino acids requires two 
nucleotide substitutions in the codon, which are much rarer than single 
nucleotide substitutions

spatial constraints limit 
the number of amino 
acids that interact directly 
with the substrate

random amino acid substitutions rarely change amino acids in the 
substrate-binding site because only a few amino acids form the substrate-
binding site; most amino acids lie far from the binding site

9.4.1 Overall error rate in the polymerase chain reaction

The overall error rate in the polymerase chain reaction depends not only on the error rate of 
the polymerase, but also on the number of copies created because the errors accumulate.  

Number of doublings when copying DNA with PCR. The polymerase chain reaction 
copies DNA fragments exponentially typically yielding  thousands to millions of copies. If the 
amplification is 100% efficient, then the number of DNA molecules doubles with each cycle of 
the polymerase chain reaction. The number of DNA molecules, Ncycles, is given by: 

Ncycles = 2cycles * N0 (9.12)
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where cycles is the number of cycles and N0 is starting number of DNA molecules. Thus, 

twenty PCR cycles can increase the amount of DNA 220-fold or approximately one-million fold. 
In practice the early cycles of PCR follow this formula, but later cycles are less efficient because 
the polymerase loses activity and the reagents are exhausted. The more general equation for the 
increase in the increase in product in a PCR is given by:

Ncycles = (1 + eff)cycles * N0 (9.13)

where eff is the efficiency. When the efficiency is 1, then the equation simplifies to equation 
9.9 above. 

PCR reactions, especially under error-prone conditions, are not 100% efficient and are 
typically 70-90% efficient. The amount of DNA does not double in each cycle, but increases by a 
factor of 1.7-1.9. In these cases, the important value to determine the error rate is not the 
number of PCR cycles, but the number of doublings, D. For example, twenty cycles of a PCR 
reaction with 70% efficiency increases the amount of DNA by 1.720 or 40,600. This increase 
corresponds to about 15.3 doublings since 215.3 = 40,300. Thus, 20 cycles of a 70% efficient 
PCR are equivalent to 15.3 cycles of a 100% efficient PCR.

2D = 1+EF( )cycles or D = cycles ⋅log
2
1+EF( ) (9.14)

Example 9.3. Frances used 30 cycles in a PCR to amplify a template DNA. Adding a dye that becomes 
fluorescent upon binding to double-stranded DNA revealed that the PCR procedure increased the amount 
of DNA 800,000-fold. How many DNA doublings does this increase correspond to? What was the average 
efficiency of her reaction?

Answer: Calculate the number of doublings by assuming the 800,000-fold increase comes from a 100% 
efficient reaction; then using equation 9.12 to calculate number of cycles, which corresponds to the number 
of cycles in the 100% efficient case. 

800,000 = 2cycles or ln(800,000) = cycles * ln(2); cycles = 19.6

Using equation 9.14 with the actual 30 cycles to solve for the efficiency of her reaction: 

800,000 = (1 + EF)30; EF = 0.57 or 57%

Error-rate of DNA polymerases. DNA polymerases sometimes make mistakes and insert 
an incorrect nucleotide. The error rate of DNA polymerase from Thermus aquaticus (Taq DNA 
polymerase) is about 4· 10–5 errors per nucleotide, 0.04 errors per thousand nucleotide added or 
one error per 25,000 nucleotides added (McInerney et al., 2014). This value varies with the 
reaction conditions in the range of 1-20 * 10–5 errors per nucleotide (Eckert & Kunkel, 1991a). 
In contrast, DNA polymerases from the archaea Pyrococcus furosius or Thermococcus kodakarensis 
proofread the DNA as it is copied, which lowers the error rate approximately 10-fold. These high 
fidelity DNA polymerases are not suitable for error-prone PCR.

In error-prone PCR, reaction conditions are adjusted to increase the error rate of Taq 
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DNA polymerase about 100-fold. Typical changes in reaction conditions are an imbalanced pool 
of nucleotides, increased free magnesium concentration, and addition of manganese salts 
(Cadwell & Joyce, 1992). Under error-prone conditions, the error rate is 6.6 * 10–3 error per 
nucleotide or 6.6 errors per thousand nucleotides added. Changing the reaction conditions even 
further in an attempt to further increase the error rate leads to poor amplification. Researchers 
often add a fresh aliquot of Taq DNA polymerase after the 15th cycle to replace inactivated 
polymerase.

Overall error rate in PCR. The overall error rate in a PCR reaction, εnt, will be larger 
than the error rate of the polymerase, εp, because errors from previous cycles are copied and thus 
accumulate. The overall error rate is the number of nucleotide substitutions introduced during 
the PCR reaction divided by the total number of nucleotides copied. 

εnt  = nucleotide substitutions /total nucleotides copied       (9.15)

The total number of nucleotides after a given number of cycles, assuming 100% efficient 
amplification, is 2cycles· N0, given by equation 9.9 above. The numbers of errors introduced is 
the product of the numbers of errors introduced in one cycle (N0· εp) and the increase in the total 

number of DNA molecules (cycles · 2cycles–1) (Eckert & Kunkel, 1991b).
overall error rate in a PCR, εnt= (N0· εp)(cycles · 2cycles–1)/(2cycles· N0) = cycles · εp/2           

(9.16)
The division by a factor of two accounts for the starting DNA, which does not contain errors. 

For example, the special case of one PCR cycle would create one copy of the starting DNA. 
Since only half of the total DNA contains errors, the overall error rates would be half of the error 
rate of the DNA polymerase. However, after a more typical twenty cycles, the error rate in PCR, 
εnt, is 10-fold higher than the polymerase error rate, εp, due to subsequent copying of errors 
made in previous cycles. 

Problem: Describe the contents of a PCR after two cycles and explain why the overall error rate is equal 
to the polymerase error rate. 

Problem: Jane amplified DNA using 20 cycles of error-prone PCR and found that the amount of DNA 
increased 50,000-fold. She then ligated the resulting DNA into a plasmid and transformed it into E. coli. 
She picked 10 colonies, isolated the plasmid DNA and sent the samples for sequencing. The sequencing 
yielded 600 bp for each sample for a total of 6000 nucleotides. The sequencing showed 97 substitutions. 
What was the overall error rate, εnt, and what was the error rate of the DNA polymerase, εp, in this 
experiment?

9.4.2 DNA polymerase bias 

Transcribing a DNA strand with a polymerase can introduce two types of errors: 1) 
substitutions when the incorrect nucleotide is inserted or 2) frame shifts when an extra nucleotide 
is added (insertion) or a nucleotide is skipped (deletion). Substitutions can lead to proteins with 
altered function, while frame shifts lead to misfolded proteins since the amino acid encoding is 
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altered for all codons after the frame shift. Frameshift are relatively rare (<5%) among DNA 
polymerase errors and will be ignored in the discussion below.

For the nucleotide substitutions to be random both the location of the substitutions and the 
replacement nucleotide must be random. Neither one is random in the case of nucleotide 
substitutions introduced by DNA polymerases due to the differing chemical properties of the 
nucleotides themselves. This non-random nature of the substitutions is DNA polymerase bias for 
some types of substitutions over others. The bias of DNA polymerase away from random 
nucleotide substitutions reduces the likelihood of some amino acid substitutions as compared to 
the frequency expected in a random library. One can compensate for the reduced likelihood of 
some substitutions by increasing the number of colonies screened, but this extra screening tests 
the more common substitutions multiple times.

The frequency of substitutions at AT base pairs versus GC base pairs should be equal if the 
location of the substitution is random, Table 9.5. However, GC base pairs, which form three 
hydrogen bonds, are more stable than AT base pairs, which from only two hydrogen bonds. This 
chemical difference accounts for preference of Taq DNA polymerase for substitutions at AT 
locations over GC locations.

Table 9.5. Expected changes for random substitutions in a DNA strand and observed 
changes in an error-prone PCR experiment using Taq DNA polymerase. 

Table 6.4

criteria expected for 
random

observed for Taq DNA 
polymerasea comment

location of 
substitution 1.0 GC pairing is stronger 

than AT pairing

replacement 
nucleotide

0.5
replacement with a 
similarly sized base is 
more likely

1.0 GC pairing is stronger 
than AT pairing

3.9 entries 1+2+3
entries 4+5+6

⎛
⎝⎜

⎞
⎠⎟

transition
transversion

1.9 entries 2+3
entries 5+6

⎛
⎝⎜

⎞
⎠⎟

change at AT site
change at GC site

0.8 entries 3+6
entries 1+2+4+5

⎛
⎝⎜

⎞
⎠⎟

AT→ GC
GC→ AT

a Data from Table 9.5 below. 

Two criteria measure whether the replacement nucleotide is random. The first criteria is that 
the number of transitions must be half the number of transversions. Transitions are substitutions 
where the original and new nucleotide have similar-sized bases (purine to purine or pyrimidine to 
pyrimidine exchange). Transversions are substitutions where base sizes differ (purine to 
pyrimidine or pyrimidine to purine exchange), Figure 9.4. There are four possible transitions and 
eight possible transversions, so random substitutions requires half the number of transitions as 
transversions. Replacement with a differently sized base changes the width of the base pair and is 
expected to be be less likely. Once again the chemical properties (size in this case) predict non-
random substitutions. 
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Figure 9.4. Transitions substitute a purine with a purine (A with G and vice versa) or a pyrimidine with a 
pyrimidine (C with T and vice versa), while transversions substitute a purine with a pyrimidine (A or G with 
C or T) or a pyrimidine with a purine (C or T with A or G). There are four possible transitions and eight 
possible transversions.

Exercise: Write out all the possibilities to show that random mutagenesis should yield twice as many 
transversions as transitions.

The second criteria for whether the replacement nucleotide is random is that the replacement 
base pair must be equally likely to be an AT pair as a GC pair. In other words, the AT→GC 
replacements must the equal to the GC→AT replacements. The GC content of the DNA 
remains unchanged if the substitutions are random. Because GC pairs form three hydrogen 
bonds as compared to two hydrogen bonds formed by AT pairs, replacements of AT pairs with 
GC pairs is about twice as common as replacement of GC pairs with AT pairs.

Sequencing of the DNA from an error-prone PCR using Taq DNA polymerase confirmed 
that both the site of substitution and the replacement nucleotide are non-random (Shafikhani et 
al., 1997), Table 9.6. First, most (>95%) of the errors were substitutions, not frame shifts, as 
mentioned above. The most common substitutions were replacement of AT with TA (40.9% of 
the total) and of AT with GC (27.6% of the total). Another study using different reaction 
conditions reported a different, but still non-random distribution of substitutions (Lin-Goerke et 
al., 1997). Replacement of AT with TA was only 16.1% of the total, while replacement of AT 
with GC was the most common substitution (63.2% of the total).

Table 9.6. Fraction of each substitution type expected for random substitutions and observed in error-
prone PCR using Taq DNA polymerase.a
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Table 6.5

entry substitution
fraction expected 

for random 
substitutions, %

fraction 
observed, Taq 

polymerase, %a

fraction 
observed, 

Mutazyme II, %b

1 A→T and T→A 16.7 40.9 28.5

2 A→C and T→G 16.7 7.3 4.7

3 A→G and T→C 16.7 27.6 17.5

4 G→C and C→G 16.7 1.4 4.1

5 G→T and C→A 16.7 4.5 14.1

6 G→A and C→T 16.7 13.6 25.5

a Data from DNA sequencing of 9800 nucleotides, which identified 286 errors (εnt = 2.9%). The sum of the 
substitution errors is 95.3%. The remaining errors were frame shifts: insertions: 0.3%, deletions: 4.2% and the missing 
0.2% is due to rounding errors. The data are from Shafikhani et al. (1997). b from GeneMorph II Random Mutagenesis 
kit manual; https://www.agilent.com/cs/library/usermanuals/public/200550.pdf.

The observed substitutions failed the randomness test under all three criteria in Table 9.5. 
The location of substitutions favored AT sites by a factor of almost four (75.8/19.5 = 3.9), the 
replacements favored transitions over transversions (41.2/54.1 = 0.8 versus 0.5 for random) and 
replacement with GC was 1.9-fold higher (34.9/18.1) than replacement with AT such that the 
overall GC content of the DNA increased. These biases in error-prone PCR do not prevent any 
substitutions, but skew the library by making some substitutions less common than expected in a 
random distribution. It requires more screening to find the less common substitutions.

One can reduce some of the bias by replacing Taq DNA polymerase with Mutazyme II DNA 
polymerase, which is a mixture of two polymerases (Agilent; Cline & Hogrefe, 2000). Mutazyme 
II reduces the bias for mutations at AT versus GC sites from almost four to 1.2 (50.7/43.7 =1.2; 
1.0 is ideal), but slightly increases the bias in the ratio of transitions to transversions from 0.8 to 
0.9 (43.0/51.7 = 0.9; 0.5 is ideal) and reverses the bias in ratio of replacement with GC over 
replacement by AT from 1.9 to 0.6 (22.2/39.6 = 0.6; 1.0 is ideal).

9.4.3 Codon bias

Translation of the 64 possible nucleotide codons yields only twenty possible amino acids. 
Multiple nucleotide codons encode the same amino acid; that is, they are synonymous. For 
example, the GGA codon codes for glycine, Figure 9.5. All three possible replacements of the 
third nucleotide, A, yield codons that still code for glycine. In this case, 33% of the new codons 
still encode glycine. On average, 30% of the single nucleotide substitutions in a codon yield 
synonymous codons. Some substitutions yield a stop codon (3.6% on average) and only 66.3% of 
the single nucleotide substitutions yield a codon that encodes a new amino acid (a missense 
mutation). Single nucleotide substitutions in a codon yields, on average, only 5.7 new amino acid 
codons. The inability to create all possible amino acid substitutions with a single nucleotide 
substitution is called codon bias.
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G G A Gly
mutation at
1st position

C G A Arg

A G A stop

T G A Arg

mutation at
3rd position

mutation at
2nd position

G C A Ala

G A A Glu

G T A Val

G G G Gly

G G C Gly

G G T Gly

A single nucleotide change within a codon 
only sometimes yields a new amino acid

non-synonomous
- missense = new amino acid
- nonsense = stop codon

Two nucleotide changes within 
a codon are very rare.

Figure 9.5. Replacement of one nucleotide in the glycine codon GGA yields nine new codons and only 
four amino acid substitutions. The three new codons created by replacement of the third nucleotide, A, also 
code for glycine, so 33% of the single nucleotide substitutions for this codon are synonymous. On average 
30% of the single nucleotide substitutions are synonymous. The non-synonomous codons encode only four 
new amino acids. On average, single substitutions in a codon yield codons for new 5.7 amino acids.

Converting a codon for one amino acid into a codon for any of the nineteen other amino 
acids requires changing more than one nucleotide. Low mutation rates typical of error prone 
PCR only rarely create two substitutions in one codon. If the mutation rate is 0.5% at each 
nucleotide position, then the chance of one nucleotide substitution at any one of the three 
nucleotides in a codon is 3*0.5% = 1.5%. The chance of a second substitution within this codon 
at the remaining two nucleotides is 1.5% *(2*0.5%) = 0.015%, which is 100-fold lower. This is so 
low that it can be ignored. 

Changing only one nucleotide yields only nine new codons, thus, at most one could encode 
nine new amino acids. As explained above, some of the new codons are synonymous with the 
original codon, so the nine new codons will encode fewer than nine amino acids. In the glycine 
codon example, single nucleotide substitutions encode only four new amino acids. On average, 
single nucleotide substitutions in a codon yields 5.7 new amino acids. Thus, random mutagenesis 
that changes one nucleotide in a codon does not create codons for nineteen new amino acids, but 
only for 5.7 amino acids. This codon bias is one reason that random mutagenesis libraries 
created by error-prone PCR are often incomplete.

9.4.4 Location bias 

Error-prone PCR and many other random mutagenesis methods target all amino acid 
positions equally. Counterintuitively, this random process favors mutations far from the active 
site (Morley & Kazlauskas, 2005). There are greater numbers of amino acids far from the active 
site, so greater numbers of mutations will occur far from the active site. Only a few amino acid 
residues (<10%) form the substrate-binding site and most amino acid residues lie far away. The 
inherent preference of random mutagenesis methods for mutations far from the active site is 
known as location bias.

Imagine a spherical enzyme with the active site at the center, where the amino acid residues 
form spherical, concentric shells around the active site. As one moves outward, each shell is 
larger, so it contains more amino acids. The number of amino acids, n, in each 1-Å-thick shell of 
outer radius r is given by the volume of the shell divided by the average volume occupied by an 
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amino acid residue, which is 141 Å3, Figure 9.6. The number of amino acids in each shell 
increases as one moves outward from the center. The data for a typical 30 kDa protein fit this 
prediction well for shells out to ~15 Å, but beyond this value is smaller than predicted because 
the shells become larger than the protein.  

n =
4
3⇡

�
r3 � (r � 1)3

�

141 Å
3

<latexit sha1_base64="Ehng8ldEV65qMPsnzYGFuIC9HwA="></latexit>

Figure 9.6. The number of amino acids within concentric, spherical shells increases as one moves outward 
from the center of a protein. The shells are 1-Å thick and have an outer radius of r. The blue line plots the values 
predicted by the equation shown, while the orange circles indicate observed values for a typical 30 kDa protein 
(esterase, pdb id 1va4). The agreement between the predicted and observed values is good out to ~15 Å, but then 
reaches the outside edge of the protein so the number of amino acids are fewer than predicted by the equation.

More than half of the amino acid residues in this typical protein lie 13-22 Å from the active 
site and <10% lie within 10 Å of the active site. For larger proteins, the edges lie further out, so 
most amino acids will lie even further from the active site. There is a greater number of distant 
amino acids and therefore methods that target all amino acids create a greater number of distant 
mutations. Substitutions anywhere in the protein can contribute to protein stability, so this bias 
toward substitutions far from the active site is not a disadvantage. However, substitutions near 
the active site are more effective at changing protein properties like substrate specificity and 
selectivity. In these cases, the bias toward distant substitutions is a disadvantage. 

9.5 Conclusions

The most reliable way to search for single substitutions that improve protein properties it to 
makes all possible single substitution variants and test them for the desired properties. This 
approach is a lot of work, so researchers simplify their task by making assumptions about their 
solutions. One assumption is that there are many possible substitutions that can lead to the 
improvement and that they are located throughout the protein. For example, substitutions that 
increase the thermal stability of a protein often fits these criteria. In these cases, epPCR is a 
convenient approach. It targets the entire protein, but makes an incomplete set of single 
substitutions. Since there are likely many solutions, the library will likely contain some of them. A 
different assumption is that substitutions near the active site are most likely to yield improved 
properties. In these cases saturation mutagenesis at selected locations in the substrate binding site 
is a good choice. 
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Table 9.7. Recommended approaches to make single-substitution variants for different 
protein engineering goals.

Table 6.7. Recommended approaches to make single-substitution variants for different protein 
engineering goals


goal approach rationale

increase stability epPCR many solutions likely; solutions are likely 
distributed throughout the protein

expand substrate 
range (increase 
reactivity)

saturation mutagenesis of 
residues in substrate-binding site

solutions may be rare and most likely within or 
close to the substrate binding site

increase 
selectivity

saturation mutagenesis of 
residues in substrate-binding site

solutions may be rare and most likely within or 
close to the substrate binding site
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Supporting Information for Chapter 9

from math import factorial   # 
def Vk(L, n, k):             # L = length of sequence; n = 19 for 
proteins, 3 for
                             # nucleotides; k = number of 
substitutions

ratio = 1 
for i in range(0,k):      # Loop calculates L!/(L-k)! = 

L*(L-1)*(L-2)*...(L-k-1)
ratio = ratio*(L-i)

                             # runs from i = 0 to i = k-1
nlp = ratio/factorial(k)  # number of location possibilities = 

L!/[k!*(L-k)!]
nsp = n**k                # number of substitution 

possibilities = n^k
Vk = (nlp*nsp)
print ('The number of possible variants for',k,'substitutions 

using',n,'replacements anywhere in a sequence of 
length',L,'is','{:.3G}'.format(Vk))

                 # example
Vk(4000, 3, 3)
 
The number of possible variants for 3 substitutions using 3 
replacements anywhere in a sequence of length 4000 is 2.88E+11

Script 9.1. Python script to calculate Vk, the number of variants with k substitutions.  Vk = number of 
location possibilities * number of substitution possibilities. nlp = L!/[k!*(L-k)!] and nsp = n^k) where L = 
length of sequence, k = number of substitutions and n = the number of replacements, usually 19 for 
proteins and 3 for nucleotides. Adjust these values as needed. The loop runs from  i = 0 to i = k-1 and 
calculates the ratio = L!/(L-k)! = L*(L-1)*(L-2)*…(L-k-1). 

Table 9.S1. The mixtures of thirty-two codons represented by NNK or NNS both contain the 
sixteen NNG codons, but differ in the remaining sixteen. NNK contains the sixteen NNT 
codons, while NNS contains the sixteen NNC codons. In each case, the thirty-two codons encode 
the same amino acids, which includes all twenty amino acids, one stop codon and eleven 
redundant codons.
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sequence 
NNK

sequence 
NNS

encoded 
amino acid

comment

AAG Lys only codon for this amino acid

AAT AAC Asn only codon for this amino acid

ACG Thr rare codon for yeast

ACT ACC Thr

AGG Arg rare codon for E. coli & yeast

AGT AGC Ser

ATG Met only codon for this amino acid

ATT ATC Ile only codon for this amino acid

CAG Gln only codon for this amino acid

CAT CAC His only codon for this amino acid

CCG Pro rare codon for yeast

CCT CCC Pro CCC is a rare codon for E. coli

CGG Arg rare codon for E. coli & yeast

CGT CGC Arg

CTG Leu

CTT CTC Leu

GAG Glu only codon for this amino acid

GAT GAC Asp only codon for this amino acid

GCG Ala rare codon for yeast

GCT GCC Ala

GGG Gly

GGT GGC Gly

GTG Val

GTT GTC Val

TAG stop

TAT TAC Tyr only codon for this amino acid

TCG Ser

TCT TCC Ser

TGG Trp only codon for this amino acid

TGT TGC Cys only codon for this amino acid

TTG Leu

TTT TTC Phe only codon for this amino acid
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Rarely-used codons can create protein expression problems, but the NNK and NNS codons 
do not encounter this potential problem. There are eight rare codons in E. coli: CGA, CGG, 
AGA, AGG for Arg; CTA for Leu; ATA for Ile; GGA for Gly; CCC for Pro (Zhang et al., 1991). 
The tRNAs that recognize rare codons are also present in low amounts. Normally, this low 
abundance has no effect, but over expressed proteins may deplete the existing pool of charged 
tRNAs and cause premature termination or misincorporation of amino acids. The two 
underlined codons occur in the NNK library and both code for Arg. However, the NNK library 
includes a third codon for Arg (CGT), which is not a rare codon. There are eight rare codons in 
yeast: AGG, CGA, CGG, CGC for Arg; CCG for Pro, CTC for Leu, GCG for Ala; ACG for 
Thr (Zhang et al., 1991). The five underlined rare codons appear in the NNK library, but, like 
the E. coli case, the NNK library also includes synonymous non-rare codons for each of the 
amino acids. Similar analysis indicates that NNS also encodes at least one non-rare codon for 
both E. coli and yeast.

Reference
S. Zhang G. Zubay, E. Goldman (1991) Low-usage codons in Escherichia coli, yeast, fruit fly and primates, Gene 105, 

61-72; https://doi.org/10.1016/0378-1119(91)90514-C

from math import log          # log = natural logarithm
def numTransformants(N, P):   # N = number of codon variations, P 
= probability

T_rarest = log(1-P)/log(1-(1/N))  
print('Testing',round(T_rarest),'colonies gives 

a','{:.0f}'.format(100*P)+'% probability that any individual 
variant in a collection of','{:.0f}'.format(N),'variants has been 
tested.')

T_all = log(1-(P**(1/N)))/log(1-(1/N))
print('Testing',round(T_all),'colonies gives 

a','{:.0f}'.format(100*P)+'% probability that every variant in a 
collection of','{:.0f}'.format(N),'variants has been tested.')

# example
numTransformants(32*32, 0.95)

Testing 3066 colonies gives a 95% probability that any individual 
variant in a collection of 1024 variants has been tested.
Testing 10134 colonies gives a 95% probability that every variant 
in a collection of 1024 variants has been tested.

Script 9.2. Python function to calculate the number of transformants, T, needed to have tested the rarest 
one in a collection of N variations with a probability of P. T = ln(1-P)/ln(1-(1/N)). In the example, N = 
32.0 corresponds to site-saturation mutagenesis of a single site using an NNK or NNS degenerate codon 
and P = 0.95 corresponds to a 95% probability. Adjust values for N and P as needed.

# Calculates D, the number of doublings 
# 2^D = (1+EF)^cycles or D = cycles * log2(1+EF)
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# EF = efficiency of PCR (ranges from 0 to 1)
# cycles = number of inefficient PCR cycles

from math import log
EF = 0.7
cycles = 30.0

D = cycles * log(1.0+EF,2)

print(format(cycles,'.0f'),' PCR cycles with an efficiency of 
',format(100*EF,'.0f'),'% yields ',format(D,'.1f'),' doublings.', 
sep ='')

# example
30 PCR cycles with an efficiency of 70% yields 23.0 doublings.

Script 9.2. Python script to calculate the number of doublings, or 100% efficient cycles, for a known 
number of inefficient cycles when the efficiency is known. 
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